#### Thermal Energy Storage (TES) for Home Cooling in Salt River Project District

NAU

- Aaron Espinoza (Manufacturing Engineer and CAD Specialist)
  - Maciej Ziomber (Test Engineer and Financial Manager)
- Steven Galloway (Manufacturing Engineer and CAD Specialist)
  - Janelle Peña (Co-Project Manager and Logistics Manager)
- Courtney Hiatt (Co-Project Manager and Website Developer)



Courtney 2

### **Finalized Specification Sheet**

| Engineering<br>Requirement                          |     | Target                         | Tolerance     | Measured/<br>Calculated Value | ER<br>met?<br>(yes or<br>no) | Client<br>Acceptable<br>(yes or no) |
|-----------------------------------------------------|-----|--------------------------------|---------------|-------------------------------|------------------------------|-------------------------------------|
| Provide<br>energy during<br>the 4-8pm<br>peak hours | ER1 | 11kW                           | +/- 9 kW      | Calculated                    | Yes                          |                                     |
| Charge<br>thermal mass<br>during non-<br>peak hours | ER2 | 265257<br>kJ                   | +/- 238148 kJ | Calculated                    | Yes                          |                                     |
| Reduce costs                                        | ER3 | Less<br>than<br>25.85<br>¢/kWh | +/- 5 ¢       | Calculated                    | Yes                          |                                     |
| Initial Costs                                       | ER4 | Less<br>than<br>\$5000         | + \$0         | Measured                      | Yes                          |                                     |



#### Courtney 3

# **Finalized Specification Sheet**

| Customer Requirement                                             |      | CR met? | Client      |
|------------------------------------------------------------------|------|---------|-------------|
|                                                                  |      | (yes or | Acceptable  |
|                                                                  |      | no)     | (yes or no) |
| User Friendly (ease of access & easy to assemble and integrate)  | CR1  | Yes     |             |
| (min, %)                                                         |      |         |             |
| Reliability (be able to cool down the house)                     | CR2  | Yes     |             |
| Safety (safe to keep it in the house)                            | CR3  | No      |             |
| Affordability (Return on investment no longer than five years)   | CR4  | Yes     |             |
| Help reach SRP goal to decrease carbon emissions from 2005       | CR5  | Yes     |             |
| levels by 65% by 2035                                            |      |         |             |
| Provide air conditioning through the thermal mass between 4-8 pm | CR6  | Yes     |             |
| Charge the thermal mass during non-peak hours                    | CR7  | Yes     |             |
| Provide state of the art research/literature review              | CR8  | Yes     |             |
| Determine typical SRP electricity use during peak months         | CR9  | Yes     |             |
| Provide savings                                                  | CR10 | Yes     |             |
| Consider SRP customer rate programs with and without customer-   | CR11 | Yes     |             |
| site solar PV generation                                         |      |         |             |
| Provide economic analysis of designs                             | CR12 | Yes     |             |
| Choose one thermal energy storage solution to build and test     | CR13 | Yes     |             |
| Propose a full-scale design                                      | CR14 | Yes     |             |
| Stay within \$5000 budget                                        | CR15 | Yes     |             |



# Safety Minute

#### PPE

- Safety Goggles
- Gloves
- Closed Toed Shoes
- Cover Visible Skin



# Background



# **Project Description**



**Fig. 1** Average hourly electricity load by region [20]

- $\circ~$  The peak of the demand has the highest cost
- $\circ~$  The peak demand is also the most difficult and expensive to produce
- $\circ~$  Using more energy storage in the minimum demand times and

releasing that energy during the peak demand is our goal

- $\circ~$  Sponsored by SRP
- $\circ$  Budget of \$5,000

[20] Hourly electricity consumption varies throughout the day and across seasons - U.S. Energy Information Administration (EIA), https://www.eia.gov/todayinenergy/detail.php?id=42915 (accessed Feb. 5, 2024).



NORTH

### Deliverables



A comprehensive study report evaluates thermal energy storage methods and their costs.



Analysis of SRP customer electricity usage during peak months, assessing possible cost savings with thermal energy storage options.



Proposal describing various energy storage technologies, including technical and economic requirements.



Design, build, and test at least one thermal energy storage solution.



A full-scale design proposal is based on test results, including an initial techno-economic analysis.



## **Success Metrics**

#### Technical

Performance: Testing the heat transfer through the design will allow us to verify the system scalability, capacity, and efficiency

|   | _ | 1 |
|---|---|---|
| Γ | • | • |
|   |   |   |
|   |   |   |

**Economic Viability:** Analyzing financial feasibility using NPV to confirm financial sustainability



......

**Reliability:** consistent cooling performance during operating hours



**Cost Saving:** Comparing pre and post implementation electricity bills



**Safety:** Compliance with building codes and safety standards



Maintenance:



# Requirements





### Customer Requirements

• System must provide a clear return on investment by reducing electricity costs during peak hours

- Easy for customers to use with minimal involvement in daily operations
- Support for SRP's peak electricity load reduction, aligning with carbon reduction goals.
- Components meeting industry safety standards and requiring minimal repairs
- Compatibility with Existing AC Systems





### Engineering Requirements

- TES must store enough thermal energy to cover at least 4 hours of AC load reduction during peak hours
- System must deliver a cooling effect equivalent to a standard residential AC unit
- Components must comply with residential safety standards and building codes
- System components and materials must withstand the minimal and maximal operating temperatures



# Spider Charts for our two final designs and Datum





NORTHERN ARIZONA

UNIVERSITY

12



**ORTHERN** 

UN18ERSITY

|                           |                                        |                                          |        |       | <u> </u>             |        |               |                 |                |              |                    |              |               |               |
|---------------------------|----------------------------------------|------------------------------------------|--------|-------|----------------------|--------|---------------|-----------------|----------------|--------------|--------------------|--------------|---------------|---------------|
| SRP Clientel Satisfaction |                                        | +                                        | ++     | ++    |                      | ++     |               |                 |                |              |                    |              |               |               |
| User Friendly             |                                        | (- +)                                    | -      | -     |                      |        |               |                 |                |              |                    |              |               |               |
| Reliability               |                                        | ++                                       | (- +)  | +     |                      |        |               |                 |                |              |                    |              |               |               |
| Safety                    |                                        | ++                                       | +      | +     |                      | -      |               |                 |                |              |                    |              |               |               |
| Affordability             |                                        | (- +)                                    | +      | +     |                      | + \    | <b>\</b>      |                 |                |              |                    |              |               |               |
|                           |                                        |                                          |        |       |                      |        |               |                 |                |              |                    |              |               |               |
|                           | Customer Importance<br>(1=Low, 5=High) | Percent of Customer<br>Importance Rating | Safety | Cost  | Level of Maintenance | Weight | Heat Transfer | Boston Air Coil | Mass Flow Rate | NPV (\$\$\$) | Thermal Efficiency | Latenet Heat | Sensible Heat | Specific Heat |
| Aluminum                  | 3                                      | 3                                        | 9      | 5     | 6                    | 8      | 7             |                 |                | 7            | 6                  |              | 2             | 5             |
| Copper                    | 5                                      | 5                                        | 9      | 7     | 6                    | 6      | 8             | 8               |                | 8            | 7                  |              | 2             | 1             |
| Concrete                  | 5                                      | 5                                        | 6      | 8     | 6                    | 3      | 2             | 7               |                | 7            | 1                  |              | 5             |               |
| Water                     | 5                                      | 5                                        | 9      | 8     | 2                    | 5      | 5             | 6               | 9              | 8            | 6                  | 5            | 10            | 9             |
| Ethelyne Glycol           | 4                                      | 4                                        | 7      | 6     | 6                    | 6      | 5             | 6               | 8              | 7            | 5                  | 1            | 8             |               |
|                           |                                        |                                          | 40     | 34    | 26                   | 28     | 27            | 27              | 17             | 37           | 25                 | 6            | 27            | 15            |
| Percent of Importan       | се                                     | %                                        | 22.86  | 22.08 | 23.21                | 23.73  | 23.28         | 20.93           | 22.08          | 22.56        | 23.15              | 20.69        | 21.95         | 23.08         |

### House of Quality

### Design Requirements and Engineering Requirements Relation

| Experiment/Test/Model                                                          | Relevant DR's                                                  |
|--------------------------------------------------------------------------------|----------------------------------------------------------------|
| Concrete TM heat evacuation (actual) $Q_{Conctrete}$                           | ER1 (2,3,4), ER2 (2,3), ER4 (1,4); CR4,CR2                     |
| Water-bar TM heat evacuation (actual) $Q_{waterbar}$                           | ER1 (2,3,4), ER2 (2,3), ER4 (1,4); CR4,CR2                     |
| Concrete TM forced convective heat (actual) $q_{s\ Concrete}^{\prime\prime}$   | ER1 (2,3,4), ER2; CR2, CR1, CR3                                |
| Water-bar TM forced convective heat (actual) $q_{s\ Water-bar}^{\prime\prime}$ | ER1 (1,2,3,4), ER2; CR2, CR1, CR3                              |
| Total simulation (Actual, Theoretical, Error calculations)                     | ER1(1), ER2 (2,3,4), ER3 (1,2,3), ER4 (2,3) ; CR2, CR3,<br>CR4 |



# Design Space Research



### Benchmarking

#### BAC TSU-M ICE CHILLER

•Unit consists of glycol thermal storage tank with a chiller and heat exchanger to create ice in galvanized steel coils [1].
•Ice is made in off peak hours and melted when needed to be used to cool in HVAC system [7]



#### Paraffin TES

Paraffins shown to freeze without supercooling.
Chemically stable material good for many cycles of freezing and heating. [2]
The wax can absorb heat when heated and melts and when cooled in off peak hours it will slowly release the heat.



#### **Chilled Water TES**

•Tank of water is chilled and insulated to hold at desired temperature, cold water can be separated from hot due to stratification of layers from temperature/ density difference [3].

•Avoiding phase change in the water allows for simplicity and cost reduction over ice storage



18 Courtney



Useful during the prototype testing phase (Maciej and Courtney)

. "Who Said Thermal Storage Has to be Only in Tanks? Thermal Storage in the Building Envelope" (*Presentation*) [13]

Provides useful graphs showing average daily load using solar panels used to heating and cooling

Provides overview of methods to storing thermal masses in buildings

Fluid Mechanics: Fundamentals and Applications

(everyone)

Provides information on how Fluid Mechanics works
Transition of fluids for Transient Heat Specifically
Provides useful equations on Fluid Mechanics

Iterature



18- Courtney

#### Energy Storage (Book) [18]

- Chapter 4 Heat Storage
- Explains the importance of heat storage and heat exchange devices.
- Explains the different ways to analyze heat storage and heat exchange devices.
- Useful Graphs and Figures as well

#### Hybrid HVAC with Thermal Energy Storage Research and Demonstration (Website) [20]

- Another College team set out to create a Thermal Energy Storage Device to support the grid.
  Compares chemical analysis with a thermal analysis.
- Has a comparable functionality report
  Black Box model that is useful and comparable



#### Fundamentals of Engineering Thermodynamics (Textbook) [16] • Provides information on Thermodynamics • Provides useful equations on Thermodynamics

#### Air Conditioning with Thermal Energy Storage (Journal Article) [19]

- Talks about almost exactly to what this project is about.
- Materials-PCM's, construction materials, concepts
- ASHRAE Figures
- Similar Prototypes

#### Storing Thermal Heat in Materials (Website) [21]

• Has a table with the important Thermal Heat Storage values for different materials that we plan on testing

#### Fundamentals of Heat and Mass Transfer (Textbook) [15]

Provides information on Heat Transfer
Transient Heat Specifically
Provides useful equations on Heat Transfer

Storing energy : with special reference to renewable energy sources (Book) [17]

Chapter 13 specifically provides details about Phase Change Materials
Chapter 13 for Phase Change Material Equation

# <complex-block>



1. "Paraffin: Thermal Energy Storage Applications " (book) [7]

 Pros and cons of storage systems: sensine storage is next if the operating temperature is higher, latent is best at narrow operating ranges
 Useful for research and concept generation (Janelle/veryone)
 "Economic Analysis of a Novel Thermal Energy Storage System Using Solid Particles for Grid Electricity Storage" (Conference Paper) [8]
 This paper includes images of the mechanical systems used for thermal energy storage Equations for calculating the economic efficiency of thermal energy storage systems
 Useful for financial analysis (Maciej)

#### 3. "Advances in Thermal Energy Storage Systems" (*Book*) [9]

Comprehensive analysis of thermal energy storage systems using water, molten salts concrete, aquifers, boreholes, and phase-change materials Useful for prototymine/manufacturine (Steven/Aaron)

#### 4. "Seasonal thermal energy storage with heat pumps and low temperatures in building projects – A comparative review" (*Article*) [10]

 Research article that compares the coefficient of performance (COP) of different heat pumps used for thermal energy storage
 Useful for research/data collection (Janelle)

5. **"Thermal Energy Storage"** (*Government Website*) [12] Provides website links to specific thermal energy storage projects Useful during concept generation production (**everyone**)

#### 5. "Thermal conductivity measurement techniques for characterizing thermal energy storage materials – A review" (*Article*) [11]

This article develops methods for testing materials and systems for their thermal conductivity.
Useful during the prototype testing phase (Maciej and Courtney)

7. "Who Said Thermal Storage Has to be Only in Tanks? Thermal Storage in the Building Envelope" (*Presentation*) [13]

 Provides useful graphs showing average daily load using solar panels used to heating and cooling
 Provides overview of methods to storing thermal masses in buildings

#### Storing Thermal Heat in Materials (Website) [21

 Has a table with the important Thermal Heat Storage values for different material that we plan on testing





20

20- Courtney



Finite element methods for numerical heat transfer approximations and failure mode analysis

Resources about how to use and understand ANSYS. Specifically, Workbench (Mechanical and Fluent)

21-Steven

UNIVERSITY

Air Source Heat Pumps Tax Credit | ENERGY **STAR** (government website) [29] Lays out the requirements for a company to apply for ENERGY STAR

How to create a device that is ENERRGY STAR compliant

2018 International Building Code (IBC) (government website) [31] Identifies the rules about the sizes and shapes of objects on residential properties.

2018 International Plumbing Code (IPC) / ICC *Digital Codes* (government website) [33] The rules and regulations for geothermal devices Hints back to the IMC and digging holes and points to the swimming pool and Spa Code

2018 International Swimming Pool and Spa *Code (ISPSC)* (government website) [34] The rules about digging shallow holes. Give the ways to classify the use of a hole.

The Consumer Product Safety Improvement Act (CPSIA) (government website) [35]

A list by category about every type of product

Every category has rules about how to safely create and injury proof a device.

Led to the discussion about what does this device do in an earthquake or tornado.

2018 International Fire Code (IFC) (government website) [30]

The requirements for wiring and spacing. Also discusses the safety requirements for some products like air conditioners.

2018 International Mechanical Code (IMC) (government website) [32]

All the rules for ducting and air handling for a structure

Hints at digging holes and how and why regulations apply to burning things.





22- Maciej

Armstrong World Industries | Armstrong Ceiling Solutions (website)[5] A building material that uses PCM to regulate temperature in a passive method.

Their products can be purchased on a website.

Hybrid HVAC with Thermal Energy Storage Research and Demonstration (government website) [20]

Government research into a working model of CTES for a small commercial or residential structures

Includes investment and material costs.

Cold Storage - Viking Cold Solutions<sup>™</sup> (website) [6] A PCM built simply for refrigerators and The simple design lowers cost and

maintenance

Paratherm- Low Temperature Heat Transfer Fluids (website) [38]

Phase Change Materials | PCMs | Ceiling

Systems (website) [36]

Ceiling tiles using the passive method and a

different PCM. They advertise a PCM that is a cable to

distribute in a building.

*PCM Products* (website) [37]

Products with PCMs into the range of

refrigeration or freezer usage

Specialized heat transfer fluids purchasable on the website

SRP Time-of-Use (TOU) Price Plan / SRP (website) [39]

The chart that started the discovery of number of hours of cooling

Lead to the discovery of the cooling value and the baselines of the project

A very wide range of items for heating and cooling applications

These are incredibly low temperature fluids.

# Literature **Review**

NORTHERN ARIZONA UNIVERSITY

23

23-Aaron

# MATLab Thermal Resistivity and Theoretical Heat Transfer

 $T_m, u_m$ 



# Mathematical Modeling - NPV

 $NPV = \sum_{i=1}^{n} \frac{Cash Flow_i}{(1+r)^i} - Initial Investment$ 

| Thermal Energy Storage       |       |                |  |             |          |  |  |
|------------------------------|-------|----------------|--|-------------|----------|--|--|
| Net Present Value Calculator |       |                |  |             |          |  |  |
| Vour NDV/iot                 |       | H2O Bars       |  | Conc        | Concrete |  |  |
| rournev                      | 15.   | \$4,873,270.52 |  | \$32,624.92 |          |  |  |
| Dicount Rate:                | 4.75% |                |  |             |          |  |  |
| Period (#years):             | 5     |                |  |             |          |  |  |

#### **Initial investment** and **Cash Flow** Calculations were precisely performed in Excel to obtain those results

| Initial Inevstment |     |           |     |            |  |
|--------------------|-----|-----------|-----|------------|--|
| H2O Bars           |     |           | Con | crete      |  |
| \$                 | 7,3 | 33,500.00 | \$  | 135,410.00 |  |

| ROI Calaculations |          |  |  |  |  |  |
|-------------------|----------|--|--|--|--|--|
| H2O Bars          | Concrete |  |  |  |  |  |
| 13%               | 24%      |  |  |  |  |  |

| Present Value |     |               |          |              |  |  |  |
|---------------|-----|---------------|----------|--------------|--|--|--|
|               | H20 | O Bars        | Concrete |              |  |  |  |
| Period        | Ca  | sh Flow       | Period   | Cash Flow    |  |  |  |
| 1             | \$  | 2,673,031.03  | 1        | \$ 36,796.18 |  |  |  |
| 2             | \$  | 2,551,819.60  | 2        | \$ 35,127.62 |  |  |  |
| 3             | \$  | 2,436,104.63  | 3        | \$ 33,534.72 |  |  |  |
| 4             | \$  | 2,325,636.87  | 4        | \$ 32,014.05 |  |  |  |
| 5             | \$  | 2,220,178.40  | 5        | \$ 30,562.34 |  |  |  |
| Total         | \$  | 12,206,770.52 | Total    | \$168,034.92 |  |  |  |



#### 26 Courtney

## Mathematical Modeling- ASHRAE Cooling Load [44]

| Max Q Values (Btu) | Max Q Values (kJ)   | Max Q Values (kWh) |
|--------------------|---------------------|--------------------|
| 477,000            | 503,000             | 140                |
| Min Q Values (Btu) | Min Q Values (kJ)   | Min Q Values (kWh) |
| 54.100             | 57.100              | 16                 |
| Max Qdot Values    | Max Qdot Values     | Max Qdot Values    |
| (Btu/h)            | (kJ/h)              | (kW)               |
| 68,200             | 72,000              | 20                 |
| Min Qdot Values    |                     | Min Qdot Values    |
| (Btu/h)            | Min Q Values (kJ/h) | (kW)               |
| 7,730              | 8,160               | 2                  |

Equation 1 Qwindows=Uwindows\*Awindows\*CLTDcorrected Equation 2 Qwalls=Uwalls\*Awalls\*CLTDcorrected

*Equation 3* Qtotal=Qroof+Qwindows+Qwalls



# Mathematical Modeling - Materials

function MaterialProperties(HeatofFusion, SpecificHeat, DensityMatrix, MinEnergyRequirement, MaxEnergyRequirement, LowestTemp)

Formula for Sensible and Latent Heat  $Q = mCp\Delta T + mF$ 

Rearranged to Solve for Mass

 $m=Q/(Cp\Delta T+F)$ 

**Convert Mass to Volume** 

V = m/d

Q = Thermal Energy Stored

m = Mass

Cp = Specific Heat

T = Temperature

F = Heat of Fusion (constant)

D = Density

# **MATLAB Material Analysis**



NORTHERN ARIZONA UNWERSITY

23 Courtney

# **External Flow Convective Heat Transfer - MATLAB**

Code was developed to analyze the air flow around the concrete device using MATLAB



$$\overline{N_u}_D \equiv C \, Re_D^m \, Pr^n \left(\frac{Pr}{Pr_s}\right)^{\frac{1}{4}}$$

$$\overline{h} = \frac{q}{A(T_s - T_\infty)} = \overline{N_u}_D \frac{k}{D}$$

The shape of the device varies, and the method of analytical solution varies in the code.

| Geometry                         | Re <sub>D</sub> | С     | m     |
|----------------------------------|-----------------|-------|-------|
| $V \longrightarrow \bigvee D$    | 6000-60000      | 0.304 | 0.59  |
| $v \rightarrow \square \pm D$    | 5000-60000      | 0.158 | 0.66  |
| Hexagon                          |                 |       |       |
| $V \rightarrow \square D$        | 5200-20400      | 0.164 | 0.638 |
|                                  | 20400-10500     | 0.039 | 0.78  |
|                                  | 4500-90700      | 0.150 | 0.638 |
| Thin plate perpendicular to flow |                 |       |       |
| V-> D Front                      | 10000-50000     | 0.667 | 0.500 |
| Back                             | 7000-80000      | 0.191 | 0.667 |

# Bank of Tubes Convective Heat Transfer - MATLAB

Code was developed to analyze the air flow through the water bars device using MATLAB

$$\overline{N_{u}}_{D} \equiv C_{1}C_{2} Re_{D,max}^{m} Pr^{0.36} \left(\frac{Pr}{Pr_{s}}\right)^{\frac{1}{4}}$$
$$\begin{bmatrix} N_{L} \ge 20\\ 0.7 \le Pr \le 500\\ 10 \le Re_{D,max} \le 2 * 10^{6} \end{bmatrix}$$

 
 TABLE 7.5
 Constants of Equation 7.58 for the tube bank in cross flow [17]

| Configuration       | $Re_{D,\max}$                       | $C_1$                 | m        |
|---------------------|-------------------------------------|-----------------------|----------|
| Aligned             | 10-10 <sup>2</sup>                  | 0.80                  | 0.40     |
| Staggered           | $10-10^2$                           | 0.90                  | 0.40     |
| Aligned             | $10^2 - 10^3$                       | Approximate as        | a single |
| Staggered           | $10^2 - 10^3$                       | (isolated) cyl        | inder    |
| Aligned             | $10^{3}-2 \times 10^{5}$            | 0.27                  | 0.63     |
| $(S_T/S_L > 0.7)^a$ |                                     |                       |          |
| Staggered           | $10^{3}-2 \times 10^{5}$            | $0.35(S_T/S_L)^{1/5}$ | 0.60     |
| $(S_T/S_L < 2)$     |                                     |                       |          |
| Staggered           | $10^{3}-2 \times 10^{5}$            | 0.40                  | 0.60     |
| $(S_T/S_L > 2)$     |                                     |                       |          |
| Aligned             | $2 \times 10^{5} - 2 \times 10^{6}$ | 0.021                 | 0.84     |
| Staggered           | $2 \times 10^{5} - 2 \times 10^{6}$ | 0.022                 | 0.84     |

"For  $S_T/S_L < 0.7$ , heat transfer is inefficient and aligned tubes should not be used.

**TABLE 7.6** Correction factor  $C_2$  of Equation 7.59 for  $N_L < 20$ 

| $(Re_{D,\max} \lesssim 10)$ [17] |      |      |      |      |      |      |      |      |      |
|----------------------------------|------|------|------|------|------|------|------|------|------|
| $N_L$                            | 1    | 2    | 3    | 4    | 5    | 7    | 10   | 13   | 16   |
| Aligned                          | 0.70 | 0.80 | 0.86 | 0.90 | 0.92 | 0.95 | 0.97 | 0.98 | 0.99 |
| Staggered                        | 0.64 | 0.76 | 0.84 | 0.89 | 0.92 | 0.95 | 0.97 | 0.98 | 0.99 |

$$V_{max} = \frac{S_T}{S_T - D} V$$

 $q' = N(\bar{h}\pi D\Delta T_{lm})$ 

 $\Delta p = N_L \chi \left( \frac{\rho V_{max}^2}{2} \right) f$ 



# **Concept Generation and Selection**



#### Black Box Model Diagram

Heat Coolant (hot) Coolant Convert Electricity Release heat Electricity Convert Pressure Heat **Produce Electricity** to Mechanical from coolant Pressure to Energy Heat in Coolant (cold) Coolant (cool) Home Air Key (hot) Coolant Charge Discharge (cold) Thermal Mass Thermal Thermal Charging (hot) Thermal Mass Heat Mass Mass Discharging (hot) (hot) Heat Thermal Home Air Compressor Mass Condenser Thermal Mass Heat Exchanger

32 Courtney



# Thermal Mass Discharging Coldness

### **Functional Decomposition**





# **Concept Generation**

#### **Thermal Materials**

|                                                   | Density kg/m³ | Specific Heat<br>J/g°C | Thermal Conductivity<br>W/m K | Melting<br>Point °C | Cost \$/kg |
|---------------------------------------------------|---------------|------------------------|-------------------------------|---------------------|------------|
| Concrete                                          | 2000          | 1000                   | 1.95                          |                     | 0.13       |
| Paraffin (C <sub>16</sub> )                       | 773           | ?                      | ?                             | 20                  | 155,200    |
| Tetradecane<br>(C <sub>14</sub> H <sub>30</sub> ) | 763           | ?                      | 0.14                          | 6                   | 380        |
| Ethylene Glycol                                   | 1110          | 2.43                   | 0.256                         | -13                 | 2.99       |
| Exotic (Eutectic)                                 | 1000-1280     | 4.19-3.15              | 0.2-0.6                       | 0-(-74)             | 17.92      |
| Water                                             | 1000          | 4200                   | 0.598                         | 0                   | 0.01       |
| Concrete water mix                                | ?             | ?                      | ?                             | ?                   | ?          |
| Terracotta                                        | 780           | 1800                   | 0.8                           |                     | 1.98       |
| Air Crete                                         | 800           |                        | 1.3 -0.17                     |                     | 1.19       |
| Brick                                             | 1920          | 835                    | 0.72                          |                     | 0.45       |
| Stone                                             | 2300          | 1000                   | 1.8                           |                     | 1.1        |
| Timber                                            | 510           | 1380                   | 0.12                          |                     | 0.98       |
| Plywood                                           | 545           | 1215                   | 0.12                          |                     | 1.01       |

| Application                       |      |        |  |  |  |  |
|-----------------------------------|------|--------|--|--|--|--|
| Mode                              | Cost | Saving |  |  |  |  |
| New Built Structure               | low  | high   |  |  |  |  |
| Pre-existing<br>Structure         | high | high   |  |  |  |  |
| Off-the-shelf                     | high | low    |  |  |  |  |
| Pre-existing product modification | low  | low    |  |  |  |  |

NORT

# Concept Generation Ideas

#### Datum

#### TSU-M ICE CHILLER® Thermal Storage Unit

The TSU-M ICE CHILLER® Thermal Storage Unit reduces energy costs by storing cooling while shifting energy usage to off-peak hours. The internal melt process has an easy-todesign closed loop making it ideal for a variety of HVAC applications. Some examples include office buildings, district cooling for urban settings, schools, hospitals, sports arenas, convention centers, and more.

- Thermal Capacity: 90 125,000 ton hours
- HVAC Applications

#### Scaling Down



NORTH

# Concept Generation Ideas

#### Tubes running through TES

**Radiant Cooling** 



Clycol/water chiller Pumps fluid through the wells of the home Radiont and Convective to acheine radiant cooling cooling Tank of liquid is cooled and insulated off-peak and purged through during . Peak hours. Glycol . Application chemicals New build running through walls


# Concept Generation Ideas

#### **PCM** Panel

| - |                                                               | Micro f<br>Panal of hy<br>in pend<br>The            | PCM Pan<br>ht weight f<br>cr form<br>pinal is         | nel<br>foom/co<br>inside o<br>perfocal | mposite<br>F punel<br>ted to  | with<br>alleu            | a PC                        | . M                     |             |
|---|---------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|----------------------------------------|-------------------------------|--------------------------|-----------------------------|-------------------------|-------------|
| - |                                                               | Relic<br>Horough<br>and releas<br>Can be            | s ön in l<br>i it. Works<br>ing it sloul<br>Usid as a | heme Al<br>by aber<br>by d<br>wall or  | s. to a<br>whing t<br>cailing | ireulat<br>hermal<br>and | e cald<br>energy<br>will hu | eiii<br>quict<br>dp'aut | 1,7         |
|   | Substance<br>Thermoball - PCM<br>Composite - Minoral<br>Fiber | Aplication<br>New build<br>Existing homes<br>May be | <u>Risk</u><br>Durabi                                 | hily/stre                              | ngth                          | · · ·                    | •                           | -                       | ·<br>·<br>· |



#### **Pumping Fluid**

Purmiled Under Power dam idea. Do it in a house as a fumled water system. Store water in ceiling. full dam







## Concept Generation Ideas

#### AC ducts

Underground

















# Selection Criteria

- Cost: Pre-build
- Comfort level
- Efficiency
- Internal rate of return (IRR)
- Net present value (NVP)
- Ease of maintenance
- Power saving/grid assistance
- Cost: pre-exsisting structure
- Safety

| Design<br>Datum:<br>Baltimore Air<br>Coil- TSU-M Ice<br>Chiller Thermal<br>Storage Unit | Scores 25 |                         |                                                |                                                                          |                     |                      |                                                                                             |                                  |                                                                     |                                                        |                                                  |                                                                    | 10             |
|-----------------------------------------------------------------------------------------|-----------|-------------------------|------------------------------------------------|--------------------------------------------------------------------------|---------------------|----------------------|---------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------|----------------|
| Micro PCM<br>Panel                                                                      | 29        | CRITERIA<br>DESCRIPTION | Saves Power beca<br>doesn't use prime<br>power | nuse it How Hot/Cold will it<br>e time make the house of the<br>customer | How efficient is it | month<br>mair<br>Rep | Does it need<br>lly/yearly/Every 5 year<br>ntance. Refills, Parts,<br>airs, Ease of Access, | How well d<br>of the grid<br>pow | oes it ease the load off<br>during peak time, use<br>ver during low | Is it realizst<br>average ho<br>new build vs<br>struct | tic for the<br>me buyer,<br>pre-existing<br>ure, | Does it explode, catch<br>fire, freeze someones<br>hand if touched |                |
| Radiant Cooling                                                                         | 22        |                         | Power Saving                                   | Comfort Level                                                            | Efficiency          | Level of             | f Maintenance                                                                               | Grid Assist                      | ance                                                                | Cost                                                   |                                                  | Safety                                                             | WEIGHTED SCORE |
| In-House<br>Thermal Storage                                                             | 26        | WEIGHT                  | 7                                              | 4                                                                        | 5                   |                      | 1                                                                                           |                                  | 6                                                                   | 3                                                      |                                                  | 2                                                                  | 28             |
| Pipe System for<br>AC/Thermal<br>Conditioning in                                        |           |                         | 24%                                            | 14%                                                                      | 19%                 |                      | 4%                                                                                          |                                  | 22%                                                                 | 109                                                    | %                                                | 7%                                                                 | 100%           |
| Pipe                                                                                    | 19        |                         |                                                | Max Score                                                                | Max2                |                      | Max 3                                                                                       |                                  | Max 4                                                               | 1                                                      |                                                  | Max 5                                                              |                |
| CO2 Coolant:<br>Underground<br>Refiridgeration<br>System                                | 23        |                         |                                                | 29                                                                       | 27                  |                      | 26                                                                                          |                                  | 25                                                                  |                                                        |                                                  | 23                                                                 |                |
| Underground<br>Convection<br>System                                                     | 25        |                         |                                                |                                                                          |                     |                      | In-House The                                                                                | ermal                            | Undergro                                                            | ound                                                   | Wate                                             | r Cycle & CO2                                                      |                |
| Water Cycle                                                                             | 23        |                         |                                                | IVIICTO PCIVI Panel                                                      | Putty Cemen         | τ                    | Storage                                                                                     |                                  | Convection                                                          | System                                                 | Coolan<br>Conv                                   | t: Underground<br>ection System                                    |                |
| Puffy Cement                                                                            | 27        |                         |                                                |                                                                          |                     |                      |                                                                                             |                                  |                                                                     |                                                        |                                                  |                                                                    |                |

### **Concept Evaluation Decision Matrix**



### Concept Selection - Water Bars



Essentially ice suspended in the air

- There is not a better material that exist that is a better functioning TES for cold storage
- PEX-A is designed to last and survive the risks of using ice and water.



### **Concept Selection- Concrete Block**





Building a house with a wall for cold TES

- Can double a building material
- Can double as art/ décor
- Would require a construction business model that is supported by energy saving incentives.



# Project Management



#### **SRP Thermal Mass**

|                          | SRP                                                                      | Project lead                      |          |         |         |
|--------------------------|--------------------------------------------------------------------------|-----------------------------------|----------|---------|---------|
|                          | SIMPLE GANTT CHART by Vertex42<br>https://www.vertex42.com/ExcelTemplate | 2.com<br>s/simple-gantt-chart.htm | ni       |         |         |
|                          | TASK                                                                     | ASSIGNED TO                       | PROGRESS | START   | END     |
|                          | Initial Tasks                                                            |                                   |          |         |         |
|                          | Update Gantt chart                                                       | Courtney                          | 100%     | 8/1/24  | 8/26/24 |
| Initial tasks            | Submit Purchase Request                                                  | Maciej                            | 100%     | 8/26/24 | 9/5/24  |
|                          | Assign parts                                                             | Courtney                          | 100%     | 8/26/24 | 9/5/24  |
|                          | Project Management Assignment                                            |                                   |          |         | 8/31/24 |
|                          | Update Header Information                                                | Janelle                           | 100%     | 8/26/24 | 8/31/24 |
|                          | Update Gantt Chart                                                       | Courtney                          | 100%     | 8/26/24 | 8/31/24 |
| Updates from             | Update design efforts for what was com                                   | r Steven                          | 100%     | 8/26/24 | 8/31/24 |
| last semester            | Update purchasing plan                                                   | Maciej                            | 100%     | 8/26/24 | 8/31/24 |
|                          | Update manufacturing plan                                                | Aaron                             | 100%     | 8/26/24 | 8/31/24 |
|                          | Submit assignment                                                        | Courtney                          | 100%     | 8/31/24 | 8/31/24 |
|                          | Engineering Calculations Assignm                                         | ent                               |          |         | 9/7/24  |
|                          | State problem you're trying to solve/sole                                | ut Maciej                         | 100%     | 8/31/24 | 9/7/24  |
| Top Level                | Show image of top-level CAD/engineer                                     | in Aaron                          | 100%     | 8/31/24 | 9/7/24  |
| Summary                  | Describe sub systems                                                     | Aaron                             | 100%     | 8/31/24 | 9/7/24  |
|                          | Show updated QFD                                                         | Janelle                           | 100%     | 8/31/24 | 9/7/24  |
| Codes and<br>Regulations | Summarize codes and regulations that                                     | a Maciej/Steven                   | 100%     | 8/31/24 | 9/7/24  |
|                          | Cooling Load/Mass of Materials Needer                                    | d Courtney                        | 100%     | 8/31/24 | 9/7/24  |
|                          | Summarize conditions that led to your 1                                  | o Courtney                        | 100%     | 8/31/24 | 9/7/24  |
|                          | NPV                                                                      | Maciej                            | 100%     | 8/31/24 | 9/7/24  |

#### Project start: Thu, 8/1/2024

Display week: 5

|    | Aug 26, 2024 Sep 2, 2024 |    |    |    |    |   |   | ; | Sep | 9,2 | 2024 | 1 |   |   |    |    |    |    |    |    |
|----|--------------------------|----|----|----|----|---|---|---|-----|-----|------|---|---|---|----|----|----|----|----|----|
| 26 | 27                       | 28 | 29 | 30 | 31 | 1 | 2 | 3 | 4   | 5   | 6    | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| м  | т                        | W  | т  | F  | 8  | 8 | м | т | W   | т   | F    | 8 | 8 | м | т  | w  | т  | F  | 8  | 8  |



### Schedule

#### Gantt Chart





| ME486C_SRP_Team_Budget |        |          |             |             |  |  |  |  |  |  |
|------------------------|--------|----------|-------------|-------------|--|--|--|--|--|--|
| Total                  | Income |          | Expenses    | Total       |  |  |  |  |  |  |
| Initial Budget         | \$     | 5,000.00 | \$ 1,754.57 | \$ 3,245.43 |  |  |  |  |  |  |
| Donated                | \$     | 500.00   | \$ 251.00   | \$ 249.00   |  |  |  |  |  |  |
| Budget                 | \$     | 5,500.00 | \$ 2,005.57 | \$ 3,494.43 |  |  |  |  |  |  |

\*Budget might be a subject to some additional expenses towards the testing procedures

NORT

### **Bill of Materials**

| Assembly Name    | Thermal Energy Storage | Total Parts             | 136         |
|------------------|------------------------|-------------------------|-------------|
| Assembly Number  | 1                      | Parts Acquired          | 136         |
| Data of Approval | N/A                    | Parts Donated           | 15          |
| Date of Approval | N/A                    | Parts Purchased         | 136         |
| Total Cost       | Ć 175457               | Part Status (Purchased) | 100%        |
| Total Cost       | \$ 1,754.57            | Parts Status (On-Hand)  | 100%        |
| Item no.         | Catalog #              | Vendor Name             | Description |
|                  |                        |                         |             |

| Size | Qty | Price | Total Cost | #On-Hand? | #Purchased? |
|------|-----|-------|------------|-----------|-------------|
|      |     |       |            |           |             |

https://nau0.sharepoint.com/:x:/r/sites/ME476C557/Shared%20Documents/General/Fall%20%2724\_Semester2/ME4 76C\_Bill\_Of\_Materials.xlsx?d=w4ae5d006d8a94ad6bc5e627131f3a406&csf=1&web=1&e=MuU2si



# Design Validation/Prototyping



### **Failure Modes and Effects Analysis**

#### **Copper Pipe**

- Burst
- Loss of fluid
- Exposure to high pressure

#### Water

- Contamination
- Rapid decay of Thermal Efficiency

#### Concrete

- Erosion
- Structural Integrity Compromised and Moisture Damage

#### Ethylene/Propylene Glycol

- Contamination
- Reduced Heat Transfer



# Buckling Failure of Internal Pipe

Failure modes are listed and imagined for all possible failures. Here, the mode of highest risk is ice expansion in the casing. Pex A is designed to expand at the same rate as the water. The freezing effect will risk the copper tube being crushed.



Von Mises Stress (Pa)







## **Initial Prototyping**

#### Do we want to proceed with PCM? Will it help us cool down the houses?



#### Mixture:

#### $Cal_2 * 6H_2O + MgCl_2 * 6H_2O$

#### **Experimental Setup:**

- ABS pipe (2 in diameter, 2 ft long) capped with JB weld and hose clamps
- 3 Copper tubes (0.5 in diameter, 2 ft long)
- Tee fittings on ends with barbed fitting for tubing from a hydraulic bench
- Thermocouples on both ends, spaced by nipples and fittings

NORTH

### **Experimental Design & Method**

#### Data Acquisition:

- Pico Data Logger
- K-Type Threaded Thermocouples
- Bucket-Timer Test
- Hydraulic Bench
- Graduated Cylinder









| USB TC-08 Thermocouple Data Logge                     | r general specifications                                                                                                                   |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Number of channels (single unit)                      | 8                                                                                                                                          |
| Maximum number of channels<br>(using up to 20 TC-08s) | 160                                                                                                                                        |
| Conversion time                                       | 100 ms per thermocouple channel<br>+ 100 ms for cold junction compensation<br>(CJC can be disabled if all channels used as voltage inputs) |
| Temperature accuracy                                  | Sum of ±0.2% of reading and ±0.5 $^{\circ}\text{C}$                                                                                        |
| Voltage accuracy                                      | Sum of ±0.2% of reading and ±10 $\mu V$                                                                                                    |
| Overvoltage protection                                | ±30 V                                                                                                                                      |
| Maximum common-mode voltage                           | ±7.5 V                                                                                                                                     |
| Input impedance                                       | 2 ΜΩ                                                                                                                                       |
| Input range (voltage)                                 | ±70 mV                                                                                                                                     |
| Resolution                                            | 20 bits                                                                                                                                    |
| Noise-free resolution                                 | 16.25 bits                                                                                                                                 |
| Thermocouple types supported                          | B, E, J, K, N, R, S, T                                                                                                                     |
| Input connectors                                      | Miniature thermocouple                                                                                                                     |



#### **Data & Results**



Q = 2842 uVs \* 0.0012656 J/uVs = 3.57 J

Qmelt = 3.57 J / .0229 g = 156 J/g (error due to mass loss) - Latent heat

NORTHE

JNIVERSI

# NAU

### **Data & Results**

#### Temperature vs. Time Plots:



• Ch 7 'Inlet' (C°) • Ch 8 'Outlet' (C°)

Trial 2: Temperature vs. Time



● Ch 7 'Inlet' (C°) ● Ch 8 'Outlet' (C°)

Trial 3: Temperature vs. Time



- Consistently has a difference of approximately 2 °C from inlet to outlet as material phase changes
- Phase change occurrence visible as lines intersect.



NORTHERN ARIZONA UNIVERSITY

# **Results - Concrete Charging**



NORTHERN

ARIZON

UNIVERSIT

 Optimal Flow Rate: 9.96E-07 <sup>m<sup>3</sup></sup>/<sub>s</sub>
 Q=30 W

Courtney

# Volumes and Masses



NORTHERN ARIZONA

UNIVERSIT

Create Center of Mass feature

Show weld bead mass

Report coordinate values relative to: -- default -

Mass properties of Thermal Engergy Storage Configuration: Real Concrete Coordinate system: -- default --

Density = 2400.00000000 kilograms per cubic meter

Mass = 20.15687473 kilograms

Volume = 0.00839870 cubic meters

Surface area = 0.32764596 square meters

Center of mass: ( meters ) X = 0.00000000 Y = 0.00000000 Z = 0.26193750

Principal axes of inertia and principal moments of iner Taken at the center of mass. Ix = ( 0.00000000, 0.00000000, 1.00000000) Iy = ( 1.00000000, 0.00000000, 0.00000000) Iz = ( 0.00000000, 1.00000000, 0.00000000)

 Moments of inertia:
 (kilograms \* square meters )

 Taken at the center of mass and aligned with the outp
 Lxx = 0.48199103
 Lxy = 0.00000000

 Lyx = 0.00000000
 Lyy = 0.49726445
 Lzy = 0.00000000

 Lyx = 0.00000000
 Lyy = 0.40900000
 Lyy = 0.40900000

The specific heat of concrete:  $880 \frac{J}{kg*^{\circ}C}$ .

From 15°C to -5°C will require 355 kJ. At the optimal flow rate this means 3.29 hours to be prepared to cool a room.

# Results – Water Bar Charging

Heat Transfer Rate of Varying Flow Rates of Water Bars

Heat Transfer Rate of Varying Flow Rates of Water Bars



- Q\_dot (J/s) 3.28 x 10<sup>-7</sup> (m<sup>3</sup>/s) Flow
- Q\_dot (J/s) 6.57 x 10<sup>-7</sup> (m<sup>3</sup>/s) Flow
- Q\_dot (J/s) 3.29 x 10<sup>-6</sup> (m<sup>3</sup>/s) Flow
- Q\_dot (J/s) 6.57 x 10<sup>-6</sup> (m<sup>3</sup>/s) Flow
- Q\_dot (J/s) 3.77 x 10<sup>-5</sup> (m<sup>3</sup>/s) Flow
- Q\_dot (J/s) 3.77 x 10<sup>-5</sup> (m<sup>3</sup>/s) Flow



- Q\_dot (J/s) 3.28 x 10<sup>-7</sup> (m<sup>3</sup>/s) Flow
- Q\_dot (J/s) 6.57 x 10<sup>-7</sup> (m<sup>3</sup>/s) Flow
- Q\_dot (J/s) 3.29 x 10<sup>-6</sup> (m<sup>3</sup>/s) Flow
- Q\_dot (J/s)  $6.57 \times 10^{-6} \text{ (m}^3\text{/s)}$  Flow
- Q\_dot (J/s) 3.77 x 10<sup>-5</sup> (m<sup>3</sup>/s) Flow
- Q\_dot (J/s) 3.77 x 10<sup>-5</sup> (m<sup>3</sup>/s) Flow

 $3.77 \times 10^{-5}$  (m<sup>3</sup>/s) Flow proves to have the greatest heat transfer

After a short time, the laminar flow in the pipe does not allow for mixing and higher heat transport.

Steven

# Final Hardware



### **Manufacturing Plan**

|                                                          |                       |                | 33% Build                                       |                          |                       |
|----------------------------------------------------------|-----------------------|----------------|-------------------------------------------------|--------------------------|-----------------------|
| Manufactured Item                                        | Picture               | Components     | Manufacture Steps                               | Expected Time<br>(hours) | Percent of<br>Project |
|                                                          |                       | 2x4 inch beams | Cut plywood                                     | 1                        | 2.0%                  |
|                                                          |                       | Plywood        | Cut 2x4 in beams                                | 1                        | 2.0%                  |
| $\mathbf{T}_{\text{out}} \mathbf{D}_{\text{out}} (900/)$ | A                     | Insulation     | Connect plywood to beams                        | 5                        | 5 10.0%               |
| Test $DOX(80\%)$                                         |                       | Hot glue       | Glue insulation onto sides                      | 0.5                      | 5 1.0%                |
|                                                          | 1 Maria               | Glue spray     |                                                 |                          | 0.0%                  |
|                                                          |                       | Screws         |                                                 |                          | 0.0%                  |
|                                                          | and the second second | Concrete       | Construct the wooden container                  | 4                        | 8.0%                  |
|                                                          | 4                     | Water          | Add the copper wire to the center               | 0.5                      | 5 1.0%                |
| Concrete Block (75%)                                     | V.                    | 2x4 in beams   | Pour concrete                                   | 0.5                      | 5 1.0%                |
|                                                          |                       | Copper wire    | Hit out the bubbles                             | 3                        | 6.0%                  |
|                                                          |                       | 2              | Remove from wooden container                    | 0.1                      | 0.2%                  |
|                                                          |                       | PEX pipes      | Apply cap to one end of PEX pipe                | 0.3                      | 3 0.6%                |
|                                                          | 1230                  | Water          | Insert the copper pipe through the one PEX pipe | 0.1                      | 0.2%                  |
| Water here (500/)                                        |                       | Copper wire    | Use glue to seal one end                        | 0.1                      | 0.2%                  |
| water bars (50%)                                         |                       | PEX caps       | Add water to the inside of the PEX pipe         | 0.1                      | 0.2%                  |
|                                                          |                       | Glue           | Add cap to the other end                        | 0.2                      | 2 0.4%                |
|                                                          |                       |                | Glue the other end                              | 0.1                      | 0.2%                  |
|                                                          |                       |                | Total                                           | 16.5                     | 5 32.9%               |



### CAD

Here will be drawing of the test box and walls that make up the box. Also here will be the updated drawing of the concrete mass





















NORTHERN ARIZONA UNIVERSITY



# **Testing Videos**





Janelle







## Top Level Testing Summary Table

| Experiment/Test                                                | Relevant DRs                                                                                      | Testing<br>Equipment<br>Needed                                                                                            | Other Resources                                                          |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| EXP1 – Glycol CV<br>Heat Transfer                              | ER2 - Charge thermal mass<br>during non-peak hours<br>CR2 - Reliability<br>CR 10- Reduce costs    | <ul> <li>Thermocouples</li> <li>Graduated Cylinder</li> <li>Stopwatch</li> <li>Pico DataLogger</li> </ul>                 | Safety equipment working<br>with glycol<br>Solar Shack<br>Dr. Wade's Lab |
| EXP2 – Thermal<br>Mass Temperature<br>Profile/Heat<br>Transfer | ER 2 - Charge thermal mass<br>during non-peak hours<br>CR 2 - Reliability<br>CR 10 - Reduce costs | <ul> <li>Thermocouples</li> <li>Graduated Cylinder</li> <li>Stopwatch</li> <li>Pico Data Logger</li> <li>Drill</li> </ul> | Safety equipment working<br>with glycol<br>Solar Shack<br>Dr. Wade's Lab |



### **Detailed Testing Plan**

| Instrument         | Measurement | Resolution | Resolution    |  |
|--------------------|-------------|------------|---------------|--|
|                    |             |            | Uncertainty   |  |
| Stopwatch          | Time        | 0.01       | 0.01 s        |  |
| Graduated cylinder | Volume      | 2 mL       | 1 mL          |  |
| k-type             | Temperature | 20 bit     | 7.15E-6 V/bit |  |
| thermocouples/Pic  |             |            | (quantization |  |
| o data logger      |             |            | error)        |  |
| RTD thermometer    | Temperature | 0.01       | 0.01          |  |

| Value                                      | Symbol             | Depends on Variables                         |
|--------------------------------------------|--------------------|----------------------------------------------|
| Mass flow rate of glycol                   | $\dot{m}_{glycol}$ | t, V                                         |
| Heat transfer based on thermodynamic model | <b>Q</b> cv        | t, V, $T_{enter \infty}$ , $T_{exit \infty}$ |
| Heat transfer based on convection          | Q <sub>conv</sub>  | $T_{enter \infty}, T_{exit \infty}, T_s$     |



### **Finalized Specification Sheet**

| Engineering<br>Requirement                           |     | Target                         | Tolerance     | Measured/<br>Calculated<br>Value | ER met?<br>(yes or no) | Client<br>Acceptable<br>(yes or no) |
|------------------------------------------------------|-----|--------------------------------|---------------|----------------------------------|------------------------|-------------------------------------|
| Provide energy<br>during the 4-<br>8pm peak<br>hours | ER1 | 11kW                           | +/- 9 kW      | Calculated                       |                        |                                     |
| Charge<br>thermal mass<br>during non-<br>peak hours  | ER2 | 265257<br>kJ                   | +/- 238148 kJ | Calculated                       |                        |                                     |
| Reduce costs<br>(Compared to<br>Datum)               | ER3 | Less<br>than<br>25.85<br>¢/kWh | +/- 5 ¢       | Calculated                       |                        |                                     |
| Initial Costs<br>(Compared to<br>Datum)              | ER4 | Less<br>than<br>\$5000         | + \$0         | Measured                         |                        |                                     |



# Finalized Specification Sheet

| Customer Requirement                                                                       |      | CR met? | Client      |
|--------------------------------------------------------------------------------------------|------|---------|-------------|
|                                                                                            |      | (yes or | Acceptable  |
|                                                                                            |      | no)     | (yes or no) |
| User Friendly (ease of access & easy to assemble and integrate)                            | CR1  |         |             |
| Reliability (be able to cool down the house)                                               | CR2  |         |             |
| Safety (safe to keep it in the house)                                                      | CR3  |         |             |
| Affordability (Return on investment no longer than five years)                             | CR4  |         |             |
| Help reach SRP goal to decrease carbon emissions from 2005 levels by 65% by 2035           | CR5  |         |             |
| Provide air conditioning through the thermal mass between 4-8 pm                           | CR6  |         |             |
| Charge the thermal mass during non-peak hours                                              | CR7  |         |             |
| Provide state of the art research/literature review                                        | CR8  |         |             |
| Determine typical SRP electricity use during peak months                                   | CR9  |         |             |
| Provide savings                                                                            | CR10 |         |             |
| Consider SRP customer rate programs with and without customer-<br>site solar PV generation | CR11 |         |             |
| Provide economic analysis of designs                                                       | CR12 |         |             |
| Choose one thermal energy storage solution to build and test                               | CR13 |         |             |
| Propose a full-scale design                                                                | CR14 |         |             |
| Stay within \$5000 budget                                                                  | CR15 |         |             |

NORTHERN ARIZONA UNIVERSITY

# Future Work



### Future Work – Water Bars

Engineer a state-of-the-art heat exchanger outside of the scope of our proof of concept

- Inline static mixing device that will not fail under the crush of ice
- Inner coil mixer that flexes with the freeze (buckling failure analysis
- Would also need to reside in very small diameter







### Future Work – Concrete

#### **Research and Development**

- Forms with inserts for the pipe •
- Pipe material cost benefit analysis ullet(Aluminum, copper, Pex, PVC)
- Construction integration method study
  - Safety integration (Securing)
  - Load bearing study
  - Condensation mitigation
  - Heat transfer optimization ٠







https://www.houseplans.com/plan/1972-square-feet-3-bedroom-2-bathroom-3-garage-traditional-ranch-cottage-sp265191 https://canel.my.id/ https://www.amazon.com/Concrete-Walkways-Walkway-Rectangular-Textured/dp/B0D9LYKC4S

https://www.johnguest.com/gb/en/resources/blog/plastic-or-copper-pipe-correct-answer



# Thank You! Questions????



/////